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Abhstract

T ir paper demor astrat s snapproachto frequency domain ident ification for the explicitpurpose
of designing robust H . contiollcas, 1711, approachtranslonmes v, experimental data into aplant
setestimate divectly vsi b @ by o dernrobust cont sol desipn software (e.p., Matlah Robust Control
Toolhoxes [11][2]). A ey issue dncontyol design Trom raw data is the question of whiethie v the
cOmtroller will work when applied to the troe system. The main feature of thisapproachis  that
the vesulting, com tiolles is puaranteed to work as desipned (whew applied 4o t e trae systern) to a
prescribed statis tical confidence. While the overall met hodolopy addiesses key theoretical issves, it
has at the sa me tiime heen specifically design ed to support practical implementations. A sinmolation
exannpleisincluded the demornis trate the overall approich,

1 Introduction

The poal of 10hust control dest pnis to syut hesi ze @ contrallerwhich establishes certain dlosed-Toop
proper tes (e slability, performanice, ensitivity 1eduction, ot e)) foraspecificd se 1 (If open-loop
plants. The set of open loop plants is typically chavacterized using, a priomiinlormation concerning,
the physicsof the system, systemmodcellingy eng inee ring judgement, experience withshimilsmsystems,
(1(.

I the interest of redu cing, conser vatism i the plant uncertainty deseription, there have hoen
recent effor ts aimed at cha vacten izing, the plant set using, system identification techuiques [H]]6]
(8] 8]116]] 1 7][19] [22)[24])]25][30]. 1 the case that experimental input /output data is available from
the system, this 1equites charact erizing the set of plauts which are consistent with (o1 equ ivalently,
can’t be discounted based on), the data.

Jor the PUrposes of this paper, aplant 227 ) will beidentified in therep resentation shown i
Fipgure 1. Robusteontrol 111¢ 11110as ave theryapplied to uncer tainty expressedin this form. Here,
I”(z']) is a nominal estin ate of the trae plant 7227 1); Ay ds the additive uncertainty defined as
Ay T }"; C(z 1) isthe digital c ontroller under consideration,  d(h)is a white Gaussian noise
dis turhan ce of vnit variance e, and We(z1) is @ ficquency weiphting filter which characterizes the
clicct ol d(A) onthe open-loop plant o utp ut y(k).

For cont rol design purposes, the additive uncer tainty isidentified in the form A A= AW, such
that A is norm bounded, ie., such that || Mleo <10 The filter Wy is then typically incorporated
into the control design, to ¢ nsure robustness p roperlics over the additive uncer tainty set. I desired,
t he disturbance spects uin Wy canalso bhe estimmated. The overall processing, scheme is suinmarized
n Figure 2.
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Figure 1: Canonical representation for identification and robust control

Amore complete trcatinent of the approach yeed in thie pay €1 can be found in Bayard and Ya iy
[6). Aleo, cach of the constituent alporithme have since appeared intheliterature, of., [3][5][4][7]] 28].

2 ¥requency Domain Estimation

Congider the gingle input single- output systemn Of the forn,

y(k) @ P (k) 4 Wa(z ) )d (k) (1)

whare Wy is a minimal phase 1ational noise tranefer function in the backward ghift operator 2!

snd d is & white Gaussian noise sequence with unit covarjance,
The input excitation ie chosen as @ Schyocder-phased multisinusoidal input design [5],

us(k) = [1'> “ V20 cos(uikT 4 ¢y (2)
i1

~tey

where wy = 2a4f4y, 9,/ = Nyyn, < NJ2.0 The powar is notmalized as )70 ¢ = 1 where the
1dative power in cach component {a; > 0,1 1,..0,} is assumed specified. In order to minimize
peaking in thne domain the sinusoids are phased according, to Schrocder [b][29] as,

i
@iz 2n > JJo; (3)
j: ]
At sleady-state, the plant response 1o v, ie denoted a5 y, and is given by,

vs(k) = >:(b"ﬁ\/?(q cOs(ik T} @) - @i 2aq sin(wik T - @) - o(k) 4

1)
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Figure 2: ldentification aud robust control jntegs ation



where, i .
ae SP(E Y, s R{P(e ) (%)

¥o1 notational convenience, the index k starts from (1 in (4) eventhough we are insteady-state.
Since the poal is Lo estimate the quantitics @i and bi it is convenient to colieet ¢ hese quantitios in a
single vector @ defined as follows,

o :[a?, ") (6)

e

« = [a, ----[1-,'1';'; bs by e by,) ()
1 <t the noise transfer function be decomposed as,
Wa(2 ]) : OvV(z' ]) (8)
Methods for plant estimation will depend upon whether the noise paraineters Woand/o1 o are known
o1 unknown. These cases are considered separately below for SISO plants. More general expressions
applicable to MIMO plants can be found in [8).
2.1 Case la: W and o Known
If filter W is known one can “whiten” the efiect of the noise in (4) by inverse filtering,
W2 (k) = walk); W(2 Ving(k) = w(k) (9)

Assumne that w periods o { filtered input/outputl data #,, §, are collected at steady-state. Denote
the output data from the £ih period as,

Ba(k) = Ga(k 4 (€~ 1)N,) (10)
for k= 0,...yNy-1and £:1,..., 1
Con struct plant estitnate 2, by aver aging, DF1Vs as follows,

2 Vi)

]’5 Wy )= - (]]
( ) lla(u)‘) \ )
a; = 8'{}’,(&’.‘)}, b‘ : 81‘{]’3(&’;)} (12)
where
l ’ R N,-1 ) . ) N,-1 ) .
Vi) D5 R M Ugwn) = ) dng(k)er ik (13)
k= 0 h: 0O

Assuming, o i known, and i > 1 windows of data are taker in stead y-state, the eract exror
probability distributions are given as,

0 = [iil,..., @, b1, b, )" (14)



(e ) - Py

e ~x'(2); 6 6~ N(0,%) (a5)

2 (C 0 |

AT 2 ‘

oo (0 (:> (16)

c :diaglenr, . . . . G, ) G W (e T2 /(B2 aq 1N,) (17)

whiere N(z, X) is a multivariate Nonmnal distribution with mean z and covariance X, and X (v)
denotes a Chi-Squared distribution with v degrees of freedoin.

2.2 Case 2t W Known, o Unknown
If ois unknown, it canbe estitnatedas follows,

2. 241 S IV ) - Y (i) )
6% = (18)
N,(aeN, - 21,)

where, A
Yo (wi) 1oy YHen) for i or o, i in g (19)
{o otherwise
It isnoted that the summationin (18) is overthe twej-sided D1 spectiumn, and that ¥, in (19) is
zeroed out at all har monic components which have zero encr gy in v,. This £6N€I al formula allows
the designer freedom to exclude harnonics in the multisinusoidal sum (2).

If 0 is estimated using (1 8), andin windows of data aretakenin steady -statc., the. ezact error
probability distributions are given as,

Ds
~>

(1N, - 21,)- 7

~ X (N, - 21,) (20)

o]

Ple 3Ty Py(w))? e .
l ( ?5)705{ (i)l ~ F(2,1Ny~ 21,) ()
whme]"(l’lmz)denotesa}=‘i£:hc1diﬂtrilmtion with » and v, degrecs of flee.dolrl, andi(r)denotes
a Student t distribution with p degrees of fi cedom.

The(1- @)X 1 00% confidence region for the case of 0 estimated by 62 is a per fect cirde
centered at Ps(wi) = bi 4 jéi Of radius G where from (21),
2 ?6?”4’((:‘ j“"'j')lylﬁ- o(2,10Ny - 21)

G =

. 22
i flaanN, (22)

2.3 Case 3: W Unknown, o Unknown

i the noise transfer function Wa = oW is completely unknown, it can be estimated using, an
approximate (asymptotic) analysic as given in this scction,




¥or this purpose, the following assumption is made,

Assumptionl Assumethat the length of thedata window 7),: 7N, islarge col n pared to the
time constants of W arid its inverse ‘W' >

Since u, is a periodic function, it can be shown that Us(@i) = Us(w;)/W (e 3y (i c., inverse
filtering by ‘W is equivalent to dividing by W in frequency domain). This propes ty follows di me.tly
from the well-known correspondence between circular convolutions and multiplication of DFIVs
and in peneral will not hold for non-periodic signals. ]]owcver in light ofAssmnptlon 1and (9), a
sitnilar relation is approximately true for the output, i.e. ,} f(wi) o0 YH(wi) [W (e jua ). Substltutmg
these expressions into (1 1) gives,

],a(u)t') L= ﬁ‘ >:;,:] }I’l(w‘.) ~ 13; :;,11 Yﬂl(w")

) Uk (#9)

Note that the dependence on ‘W divides out in (23) to give computations completely in termns
unfiltered quantities. }] ence, results (31 )-(17) of Section 2.1hold with (1 1) replaced by (23). This
obscrvation is c1 ucial since the filter Wi assumned to be unknown in the present case. In this cam,
the plant can be estimated by the ratio of 1 )1Ts of unfiltered quantities,

~tr Y’(U’J

’ Y - 7n A1 A
]s(wt) - lla((&") (}4)
where,
) Nl N1 o
IO CORNN PO R CONP RO T (25)
LC]. k- 0

1t 1 in the expressions (15)-(1 7), to give statistics of the plant estimate ¢ obtained using
the £th data window processed alone, i.e.,

0t ~ N(6,31) (26)
1]
oot (€0 on
C': diaglely o @ 10 IW(E TR/ (PP ily) (28)

Here, the superscript ‘[I” denotes that 1= 1,i.c.,only asingle window isused in the computation.

Since the statistics for cach window are Gauvssian and given by (26) (with di agonalcovariance
matrix), one can write the spectral esti mate at each frequency grid point as,

6! ~ N(6;,0%ck1) (29)
where, ,
. (4 S (® 3
’ (bf)’ 4 (bi> (30)
Y (wi)
14 5 L] ' 3]
],(U;) Ua(wi) ( )




il = S{P{(@)}, B = R{P(w)) (32)
By Assumption 1, cach data window is long compared to the time constants of W and hence the
data windows are approximately statistically independent. By noting that the spectral estimnate ('24 )
is an average of 1 (approximately) independent normal variates, one caninvoke Norinal the'c)ry to
generate statistics of the mean anclcovariancein (29). This gives the following noise estimate,

e Yalwi) - YEwi)l?

Wt - >
l d(at)l ("L- ])NO (33)
where,
7 1 x~m vt .
Y Wwy) = { " >/l:] }a (‘Ui) f()]" Wy o1 L’*’N,~|' in u, 34
e 0 otherwise (34)
Given Assumption 1, the error probability distributions are given approzimately as,
2oy Wem 36T P ()2
FraamNofP(e 940) = Pl e (35)
2“4’4((,0‘)'?
20m - ])IWd(w‘-)[ )
| gty AR 36
le((:‘ Jw.'l)l X (?("L ])) ( )

The (I - @) X 1 00% confiden ce region for the case of Wy estinated by Wy is a perfect ci1cle
centered at 1% (wi) = bi 4 jé; Of radius € where from (35),
2 2AWa(w)Ph. o2, 1)

“r fapnN, (37)

2.4 Transfer Function Curve Fitting

Consider the problem of finding a rational transfer function P°(2=1) = (2-1 )/o(z. 1 ) whit.}1 min-
imizes the weighted 2-norm of the! error between itself and specified frequen cy domaiu data Py,
ie.,

s

» ~ 7
in W ()
1= 1

Py(wi)~ (e R (38)

A simple but approximate algorithm [27) is given by the! following fixed-point iteration, (denoted
here as the SK iteration),

e

k41 pk41 _ SN w2l
N min }J we(w;)
P

1 2

ak (e 3wl (J'G(w‘-)a(c‘ Ty L p(em jw.-:l')>

(39)

with initial conditiona®= 1, °: 0. With e* fixed at cach iteration, the cost functionin (39) is
quadratic. inthe cocflicients of a and b. Hence, the SK iteration is implemented as a scquence of
lincar least squares problems.

The original work of Sanathanan and Koerner [27] is forinulated in the Laplace s domain.
1 Jetails of the formulation in the z-domain with some practical inprovements and extensions to
multivariable systems cam be foundin [3],




2.5 State-Space Realization

Given P°, one can divide. a(2!) intob(z™ 1) to give the Markov parameter sequence {hi}. A balanced
stale-space redization is determined from the Markov parameters {h:} using any one of a number
of realization methods based on the singular-value decomposition [1 8][21]. With this approach, the
model reduction is performed systematically in terius of the Hankel singular values, and leads to a
desired reduced-ordcw balanced state- spat.c model F> with realization (A, B,C, D).

The identification approach defined by combining the. curve fitting step in Section 2.4 and re-
alization step in Section 2.5 has certain advantages over other existing frequency don rain methods,
and is discussed in more detail in [4].

2.6 Nonparametric Overbounds
The error P - J* at each grid point canbe overbounded by using the following inequ ality,
|AA()] : 1Pwi) - Ple 7)) < [P(wi) Palwi)l o [Fs(wi) Plem 757 (40)

The first termon the right hand side of (40) is probabilistic andcanbe overboundedto any
desired confidence using, the statistics of spectral estimnation error (cf., (2.2.) or (37) ). Thesecond
termon the right hand side canbe talc.ulatcxl exactly since Pyand P> are known.

Iu this manner, a statistical overbound Zl{ ® on the uncertainty can be computed, i.e.,
£ (i) > [Ag(wi) (41)
with probability 1 - e for each ¢=1,....n,. Then the probability of overbounding alln, data points

stiultaneously is given by [5],

1. k= (1 - )™ for independent errors

] {1 an, for dependent errors (42)

With this construction, 31(" is an overbound on the additive uncertainty set at all grid points
wit = 1, ..., n,sitnultancously with at least probability 1- k.

When using (42), the errors at eachgrid point cam always be treated as dependent. However, in
light of Assumption 1, thechoicel-k= (1 - &)™ canbe used with little error sine.c the frequency
domain processing tends to make the errors independent.

The above analysis only ensures overbounding at the. grid points. Overbounding in-between grid
points can be done using a-priori estimates of the damping in the systemn, as shown in [b]. However,
this interpolation error will be ignored inthe present analysis since such theoretical expressions are
overl y conservative for lightly damped systems. Rather, it is assuvined that reasonable engineering
judgement has been made in the choice of frequency grid so that the: interpolation error can be
ignored. (Such grids are required anyway for most other enginecring analysis, plots, etc. ).

2.7 Spectral Overbounding and Factorization

The LPSOY algorithm introduced in [28]is used for determining a miniinum-phase transfer function
Wysuch that [Wa|isa tight overbound on £} “(wi)i= 1,.., 1,




Forming, the. quantity Wa(2)Wa(z~ 1) and evaluating on the unit circle gives an expression of
the form,

WiW, = ggz:; (43)

where,
ﬂ(u)) = ﬁo —' ﬁ]COS((L’.,I') ’l .ot ﬂ"l.cos("w’y‘) (44)
a(w) = 14 a; cos(w?’) 4 ... 4 ey cos(mwT’) (45)

The requirement that | VWA | be anoverbound on some specified function of frequency £(w)is
equivalent to the requirement that [W4|2is anoverbound o011 ther square of the function €2 and can
be expressed as,

Bw) 5 g2y for all we [0, X /7] (46)

a(w) ©

The requirement that |[W4|? bea “tight” overbound can be expressed as,

1 )
where,
6= mua,ux{(ggz:; - (w))g M(w)} (48)

here, the criterion minimizes a worst- case error §, which is fi equency weighted by the quantity
q”’' (w). The requirement that the. overbound #/e admits spectral factor WA cam be satisfied by

ensuring that (cf.) Astrom [1]),

B(w)/a(w)> 0 foral we[0,77 /7] (49)

a(w) >0 jor allwe[0,n/T) (50)

Note that condition (49) is implied by (46), and condition (50) can be enforced explicitly by the
constraint ,a(w) > « > 0 for some sinall @, For technical reasons, a similar constraint is enforced on
B as f(w) > B >0 for some smnall . The constrained optimization problem above can be written
on the frequency grid as,

min 6 (51,
b,05,3,
subject to
Bwi) - £ (wi)ae(w;) >0 (62)
Alws) i) < Sg(wia(w) (53)
ﬂ(w;) > ﬂ; (!(LU") > (54)

Jorallwiyi= 1. n,

where ea(w) and f(w) are. defined by (44). A key observation is that for fixed é the optimization
over cv, fissimply a linear programming problem to fin d a feasible solution for the coefli cients
o; Bi- 1 en ce, the joint optimization problem canbe solved by a nested search procedure where

0




an ou ter-loop system aticall y decreases § while an inner-loop finds feasible solu tions in the variables
« and g for fixed 6. This algorithm is converges tothe globaly optimal solution of the nonlinear
constrained minimax problem defined by (51)(52)(53)(54) [28].

Once the solution f#/eis found, it can bespectrally factored by factoring = b*banda=a*a
scparatel y as pol ynomials. W c then choose W4 = b/a. An excellent algorithm for polynomial
factorization which avoids solving for roots, is given in Kucera [2.0].

3 Robust Control Design

Once the nominal plant P(2) and additive uncertainty AA = AW 4(2) have been characterized
using, the methods above, it becomes a well-known problem in the. robust control literature to frnd a
controller with desired robustness propertics. For example, thereisa general framework for robust
control synthesis based on the. y measure [15][14] which can be invoked at this point. Alternatively,
the discussion here will concentrate on an } o, approach based on the weighted mixed-sen sitivi ty
H oo problem.

For use with software packages such as{2][1 1] whichare applicable to s-domain control design,
it is necessary to use a Tustin transformation (cf., [1 1]) to convert the “z” plane quantities f’(z) aud
W4(2) to the “w” plane for control design. An inverse Tustin transformation is then used to convert
the control design back tosampled-data formn for implementation. Since the He, norm is invariant
under the Tustin transformation, robustness and perform an ce bounds satisfied by the controller in
the w plane will carry over when implemented in the 2 domain.

3.1 Weighted Mixed Sensitivity problem

It canbe shown that a necessary and suflicient condition for robust performance (with implicd
robust stability) canbe written with respect to weighting WA as,

(1) <1, for al w (55)
where, .
- ’YW] C») - 7WIS(~!,»G) (56)
[ WAQ(Pa C) -Wy Q(])a C)
S(P,C)=(4P0), QU C)=cU+PC)? (57)

Here, 1 is the structured singular value introduced by Doyle [15][1 4]. To find the controller which
provides the best robust perfordr-rant.c from (55) (i.e., p-synthesis), it is require.d tomaximize 7 over
choice of . This is typic. ally done inau iterative. manuer, by first fixing 7 and finding a feasible
solution to (55). If one exists, the. value of 7 is increased and a new feasible solution is sought. The
largest value of v which admits a feasible solution Cis optimal. Methods for synthesizing robust
controllers based on p-synthesis are givenin [2].

For the purposes of this paper, control design will be considered in terins of a related H,, criteria
for robust perforin ante. In particular, it can be shown that the following inequalities hold [1 O],

171leo < up (1) < V2{|J|ec (58)

w

10




Where, e

J - 7W1‘S(]:’ (/')

[ W2Q(F,C) 1

and W2 = WA fcn-the.present application. This implies that designing a compensator to maximize

7 subject t0 ||J}lee < 1 will givea result to within3db of the p-synthesis approach. Finding such

a Cis cdled the weighted mized-sensitivity H o, problesn in the literature, an d can be solved uging,
available software [1 1].

(59)

4 Numerical Example

A 50 state model isused for simulation purposes (obtained from the JP], ARC identification ex-
periment [12]). The noise Wais chosen asa first order lowpass noise filter with 16 Hz bandwidth
rollofl. Two hundred windows (i.e., 1 =. 200), of the steady-state responsctoa. flat Schroeder design
(2), (7= .005 seconds, n, = 256, @iz 1), are averaged and quantities F,,|Wa| arid € (to 95%
confidence) are generated using formulas (24)(33)(37), respectively. The estimate Iy and its error
¢ are superimposed in Figure. 3 (a).The estimate |Wq| is shown in Figure 3 (b) superimposed on
the true [Wa| for comparison, It isseen tat the correspondence is excellent.

The estimate F, is then curve fitted using the method in Section 2,4 and realized in state-spat.c
form using the method in Section 2,5, The realized model P and the fitting error |f’ - Py |are
superimposed in Figure 3 (c). Finally, the total error £, %= |F - F4|4cisshownas the da.shed
line in ¥igure 3 (d), and overbounded with a 3rd order WA determined by the LPSO¥ algorithin of
Section 2."7. The overbound WA is plotted with a solid line in Figure 3 (d) and is seen to be very
tight as desired.

The 1 % synthesis software (hinf.m [11]), is used to find a discrete stabilizing, feedback controller
C(z) to minimize the discrete 21 normn of the cost function (56) (the. design is computed directly
indisc rete-titne and no Tustin transformation is required),

The weighting function W1 penalizes the systemn for disturbance rejection. The present design
goal is to suppress the first 3 low-damped modes with direct H°° control. These three modes are at
8, 10.5, and 11 Hz. A modal truncation M-file (modreal.m in [1 1]) gives a 6-state truncated model
of’ the original 50-state identified model. This 6-state model is used as the weighting function WI
(see ¥Figure 4(c)). The weighting function Wy is takenas the uncertainty overbound realization WA.

If such an 1 Controller exists, it will make the cost function close to all-pass i.e., it will make
the sensitivity function inverse to WI, and C S inverse to W,, thereby rejecting disturbances around
those pre-specified modes in the presence of plant additive uncertainty and achieving the robust
stability and robust performance design goal.

Figure 4 shows the H design. The responses are all well below we inverse weighting functions
as desired, and the performance index is 7 = .23. Figure 5 shows the open and closed-loop transfer
function associated with the truc plant. The true closed-loop system is stable and de.sired vibration
suppression of the first 3 mmodesis achieved,

11




|Ps| (solid), |Ps-Ptrue] (dash)

—

-60 - :
10° 10 102
C
) Phat (solid), |Phat-Ps| (dash)
BO e T
0 A
o . Hay
- v i !
e N "Iki‘\\‘/m"*w",’«"'.m y
-50 v .
-100-6% o el e
10 10 102

Frequency (Hz)

|Wdhat| (dashed), |Wd| (solid)

N o
-22 “/_’( \7‘“(4"1/‘"""\11} Y ‘
. \ Vot
W
0 -24 ' n‘f ?i‘
O o
I
il
'26 ﬁi%“
.i(\g
f
-28 T N,
10° 10’ 102
D
) L (w) (dashed), [WA] (solid)
-lo
0
n
-20
AT
NN AN /\th’\'”q
v WA
\\, v h& il’ %
_30’ G bt

10°

10
Frequency (Hz)

Figure 3: ldentification results

12



Hinf Cost Hinf Controller
( - e = 2( Lo
/
C .
8 -20[ ~ 3
\
-4O~6 -4C B
10 10° 10 10
C) - D> Hz
_inv(W1) & Sen5|t|V|ty |nv(W2) & Control Eng
5C e - o _— 50 S —
_*~_\\ /// .- - - - - - - - - - - \
\ /
K] 0 7/\/ T \Av/\/‘/\'\ % O ,\
gain: 0.23 rho 1
’50 e . _50 RN ’ . _ \
1 10’ 102 10° 10 ’0‘
Hz Hz

Figure 4: Discrete H* Design,

13



4or S

30‘

Disturbance Re?ponse (Open Loop(dashed) vs Closed flinf)

T ey

ro- - LI DA B D e D D D D B |

?0|-

107

-10}

-30]

-40% «

L J Y T S —
go . ~—4 [T U P A 1
— 1 L - CER P Y S S S

10 10’ 102

Figure 5. Discrete disturbance response (Dashed: Open Loop; Solid: Closed ] oop)

14




5 Conclusions

Simply stated, the results of this paper allow one to design a robust controller from raw experimental
data, Specifically, a frequency domain method identifies both a tin-m-invariant plant (in state-space
form) and its uncertainty bounds. The main usefulness of thisapproachis that the bounds are.
identified as a parametric weighting on the additive uncertainty which canbeused directly for
determining a robust control design. The uncertainty bounds canbe determined to any specified
statistical confidence, leading to a robust control design which will work asdesigned on the true
system to the same statistical confidence. This approach is a. special S1S0 case of the more general
MIMO method put forth in [6][9].

A numerical example was given to demonstrate the design of a robust controller for a lightly
damped large flexible structure to a prescribed 95% confidence led. As expectedfrom the theory,
the. controller worked as designed when connected to the true plant model.

A main simplifying assumption is that the unknown plant islinear time-invariant (1,1'1). While
the method is not strictly valid when this condition is violated, therc are some cases when it can
be suitably modified. ¥or example, if the plant has slowly time-varying dynamics which canbe
characterized by separate means, the same scheme canbe used by simply augmenting Figure 1 with
additional uncertainty blocks.
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